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Numerical integration over smooth surfaces in R3 via class Sm

variable transformations. Part II: Singular integrands

Avram Sidi

Computer Science Department, Technion – Israel Institute of Technology, Technian city, Haifa 32000, Israel
Abstract

Class Sm variable transformations with integer m for finite-range integrals were introduced by the author about a dec-
ade ago. These transformations ‘‘periodize’’ the integrand functions in a way that enables the trapezoidal rule to achieve
very high accuracy, especially with even m. In a recent work by the author, these transformations were extended to arbi-

trary real m, and their role in improving the convergence of the trapezoidal rule for different classes of integrands was stud-
ied in detail. It was shown that, with m chosen appropriately, exceptionally high accuracy can be achieved by the
trapezoidal rule. The present work is Part II of a series of two papers dealing with the use of these transformations in
the computation of integrals on surfaces of simply connected bounded domains in R3, in conjunction with the product
trapezoidal rule. We assume these surfaces are smooth and homeomorphic to the surface of the unit sphere. In Part I,
we treat the cases in which the integrands are smooth. In the present work, we treat integrands that have point singularities
of the single-layer and double-layer types on these surfaces. We propose two methods, one in which the product trapezoi-
dal rule is applied with a standard variable transformation from Sm, and another in which the trapezoidal rule is applied
with a rather unconventional transformation derived from Sm and achieves higher accuracy than the former. We give
thorough analyses of the errors incurred by both methods, which show that surprisingly high accuracies can be achieved
with suitable values of m. We also illustrate the theoretical results with numerical examples.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This is Part II of a series of two papers dealing with a new approach to the numerical evaluation of integrals
over smooth surfaces in three dimensions. In these papers, we treat integrals of the form
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where S is the surface of an arbitrary bounded and simply connected domain in R3 and dAS is the associated
area element. We assume that S is infinitely smooth and homeomorphic to the surface of the unit sphere,
which we shall denote by U throughout. We also assume that the transformation from U to S is one-to-
one and infinitely differentiable and that it has a nonsingular Jacobian matrix.

In Part I [11], we consider integrand functions f(Q) that are smooth over S. In the present work, we treat the
cases in which the integrand functions have point singularities of the single-layer and double-layer types over
S. That is, f(Q) is either of the form
f ðQÞ ¼ gðQÞ
jQ� P j ; P 2 S ðsingle-layerÞ; ð1:2Þ
or of the form
f ðQÞ ¼ gðQÞ½ðQ� P Þ � nQ�
jQ� P j3

; P 2 S ðdouble-layerÞ; ð1:3Þ
where g(Q) is smooth over S, jQ � Pj denotes the Euclidean distance between P and Q, nQ is the outward nor-
mal to S at Q, and (Q � P) Æ nQ is the dot product of the vectors (Q � P) and nQ.

Such singular integrals arise in boundary integral equation formulations of partial differential equations in
continuum problems. For a review of this subject, see Atkinson [1] and [2, Chapter 5].

The fact that S is a general surface in R3, as well as the fact that the integrand f(Q) has a point singularity on
S, makes the treatment of this problem considerably more involved than the case of smooth f(Q) studied in
[11]. The analysis of the case of singular f(Q) turns out to be simpler when S = U, however, and this case
is treated in a recent paper by the author [9]. The study of [9] may facilitate the study of the present work
somewhat.

Here are the steps of the method of integration we present in this work:

(i) Using the mapping of U, the surface of the unit sphere, to S, express I[f] as an integral over U.
(ii) Rotate the coordinate system on U such that either the north pole or the south pole is mapped to P, the

point of singularity of f(Q) on S.
(iii) Express the (twice-transformed) integral over U in terms of the standard spherical coordinates h and /,

0 6 h 6 p and 0 6 / 6 2p. The resulting integral can be written in the form I ½f � ¼
R p

0
½
R 2p

0
F ðh;/Þd/�dh.

(iv) Transform h by an appropriate variable transformation h = W(t), 0 6 t 6 1, where W(t) is derived from
standard variable transformations in the extended classes Sm of Sidi [10]. The resulting integral is
I ½f � ¼

R 1

0
½
R 2p

0
bF ðt;/Þd/�dt, where bF ðt;/Þ ¼ F ðWðtÞ;/ÞW0ðtÞ.

(v) Approximate the final integral in the variables t and / by the product trapezoidal rule.

Before proceeding further, we advise the reader to study Part I [11] concerning the smooth f(Q), which pre-
sents the essentials of this approach in detail. It presents a discussion on the merits of employing variable
transformations in general. In addition, Part I provides the definition and a summary of the properties of
transformations in the extended classes Sm, and also the sinm-transformation in Sm that we have used in
our computations. Finally, it also provides the relevant Euler–Maclaurin expansions, including an extension
of them due to Sidi [7]. All these comprise the analytical tools necessary for the study of the methods of the
present work. In the sequel, we will refer freely to [11] for these tools.

We now turn to the complete mathematical description of the methods we have sketched above.
Let Q = (n,g,f) and P = (n0,g0,f0) in (1.1)–(1.3), and let U, the surface of the unit sphere, be given

as in
U :¼ fðx; y; zÞ : x2 þ y2 þ z2 ¼ 1g. ð1:4Þ
Denote the mapping from U to S via
q ¼ ½n; g; f�T ¼ ½nðx; y; zÞ; gðx; y; zÞ; fðx; y; zÞ�T; ð1:5Þ
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so that the Jacobian matrix of this mapping is
Jðx; y; zÞ ¼
on=ox on=oy on=oz
og=ox og=oy og=oz
of=ox of=oy of=oz

24 35. ð1:6Þ
Thus, J(x,y,z) is known as a function of x, y and z.
Let P = (n0,g0,f0) 2 S be the mapping of the point (x0,y0,z0) 2 U. That is,
P ¼ ðn0; g0; f0Þ ¼ ðnðx0; y0; z0Þ; gðx0; y0; z0Þ; fðx0; y0; z0ÞÞ. ð1:7Þ
Now rotate the (x,y,z) coordinate system such that the point (x0,y0,z0) is mapped to the north pole or the
south pole of U. In other words, map U onto itself (orthogonally) via a fixed 3 · 3 real orthogonal matrix
H (that is, H�1 = HT) such that
x
y
z

24 35 ¼ H
~x
~y
~z

24 35; x0

y0

z0

24 35 ¼ lHe3; l ¼ �1; e3 ¼
0
0
1

24 35. ð1:8Þ
Here l should be chosen in a way that does not cause loss of accuracy numerically.
Let now
~r ¼ ½~x; ~y;~z�T; ð1:9Þ
and switch to the standard spherical coordinates h and /:
ð~x; ~y;~zÞ ¼ ðsin h cos /; sin h sin /; cos hÞ; 0 6 h 6 p; 0 6 / 6 2p. ð1:10Þ
Now, by expressing I[f] (expressed originally in terms of the coordinates n,g,f) as an integral over U

(expressed in terms of the coordinates ~x; ~y;~z) via (1.5) and (1.8), and by introducing the variables h and /
on U as in (1.10), we are actually generating a two-parameter representation of S, these parameters being h
and /. Thus, in terms of h and /, the area element dAS on S becomes
dAS ¼
oq

oh
� oq

o/

���� ����dhd/; ð1:11Þ
where kpk ¼
ffiffiffiffiffiffiffiffi
pTp

p
for p 2 R3. We, therefore, have
I ½f � ¼
Z p

0

Z 2p

0

F ðh;/Þd/

� �
dh; F ðh;/Þ � f ðn; g; fÞ oq

oh
� oq

o/

���� ����. ð1:12Þ
The vectors oq/oh and oq/o/ can be computed by the chain rule, as in
oq

oh
¼ JH

o~r

oh
;

oq

o/
¼ JH

o~r

o/
. ð1:13Þ
Here, J stands for J(x,y,z) for short, and
o~r

oh
¼

cos h cos /
cos h sin /
� sin h

24 35; o~r

o/
¼ sin h

� sin /
cos /

0

24 35. ð1:14Þ
Next, we make the further variable transformation h = W(t), 0 6 t 6 1, as explained above; this results in the
transformed integral
I ½f � ¼
Z 1

0

Z 2p

0

bF ðt;/Þd/

� �
dt; bF ðt;/Þ � F ðWðtÞ;/ÞW0ðtÞ. ð1:15Þ
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Finally, we approximate the transformed integral via the product trapezoidal rule (with the boundary points
taken out)
bT n;n0 ½f � ¼ hh0
Xn�1

j¼1

Xn0

k¼1

bF ðjh; kh0Þ; h ¼ 1

n
; h0 ¼ 2p

n0
; ð1:16Þ
where n and n 0 are positive integers. We let n 0 � anb as n!1 for some fixed positive a and b in the sequel.
We next discuss in more detail the choice of the matrix H in (1.8) and the choice of the variable transfor-

mation h = W(t) in (1.15).
As mentioned already, when determining H, we should choose l in a way that does not cause loss of accu-

racy numerically. For example, following Atkinson [3], we can take H to be a real Householder matrix, with l
fixed such that H is computed in the most stable way possible: When z0 5 0,
l ¼ �sgnðz0Þ; H ¼ I � 2ppT; p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2jz0j

p x0

y0

signðz0Þðjz0j þ 1Þ

264
375; ð1:17Þ
and when z0 = 0, we have
l ¼ þ1 or l ¼ �1; H ¼ I � 2ppT; p ¼ 1ffiffiffi
2
p

x0

y0

�l

264
375. ð1:18Þ
(Recall that, if H is a real Householder matrix, then it is symmetric, and hence satisfies H�1 = H, in addition to
H�1 = HT.)

We now describe a procedure proposed in [9] that enables us to use only (1.17) for determining
H = I � 2ppT, pTp = 1. Letting q = max{jx0j, jy0j, jz0j}, so that q P 1=

ffiffiffi
3
p

> 0, we consider three separate
cases:

(i) If jx0j = q, then
y

z

x

264
375 ¼ H

~x

~y

~z

264
375; y0

z0

x0

264
375 ¼ �signðx0ÞHe3; p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2jx0j
p y0

z0

signðx0Þðjx0j þ 1Þ

264
375. ð1:19Þ
(ii) If jy0j = q, then
z

x

y

264
375 ¼ H

~x

~y

~z

264
375; z0

x0

y0

264
375 ¼ �signðy0ÞHe3; p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2jy0j
p z0

x0

signðy0Þðjy0j þ 1Þ

264
375. ð1:20Þ
(iii) If jz0j = q, then
x

y

z

264
375 ¼ H

~x

~y

~z

264
375; x0

y0

z0

264
375 ¼ �signðz0ÞHe3; p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2jz0j
p x0

y0

signðz0Þðjz0j þ 1Þ

264
375. ð1:21Þ

Note that, in these transformations, x, y, and z are permuted cyclically to preserve the orientation of the
coordinate system.
As for the choice of the variable transformation h = W(t), we propose two different ways. Below, we recall that
transformations in the classes Sm are monotonically increasing functions that map the interval [0,1] onto itself.

1. Choose w 2 Sm for arbitrary m > 0, and let
WðtÞ ¼ W1ðtÞ ¼ pwðtÞ. ð1:22Þ
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2. Choose - 2Sq for some fixed even integer q > 0 and w 2 Sm for arbitrary m > �q/(q + 1), and define the
transformation W(t) = W2(t) as follows:
• When P is the mapping of the south pole, let
WðtÞ ¼ W2;SðtÞ ¼ 2pw
1

2
-ðtÞ

� �
. ð1:23Þ

• When P is the mapping of the north pole, let

WðtÞ ¼ W2;NðtÞ ¼ p�W2;Sð1� tÞ ¼ p 1� 2w
1

2
-ð1� tÞ

� �� �
. ð1:24Þ
Notes

1. The product trapezoidal rule for the transformed integral
R 1

0

R 2p
0
bF ðt;/Þd/

h i
dt in (1.12) is actually
hh0
Xn

j¼0

00Xn0

k¼0

00 bF ðjh; kh0Þ; ð1:25Þ
to begin with. (Here, the double prime on a summation means that the first and the last terms in the sum-
mation are to be multiplied by 1/2.) First, our transformed integrand bF ðt;/Þ is 2p-periodic in /, hencebF ðt; 0Þ ¼ bF ðt; 2pÞ. This implies that the summation

P00n0
k¼0 in (1.25) can be written as

Pn0

k¼1. In addition,
as we will see later in this work, the integrand F(h,/) is continuous for all h 2 [0,p] and / 2 [0,2p], despite
the fact that limQ!Pjf(Q)j =1. [In fact, F(h,/) is infinitely differentiable for h 2 [0,p] and / 2 (�1,1),
and 2p-periodic in / as well.] Because m > 1, there holds W01ð0Þ ¼ W01ð1Þ ¼ 0. Similarly, because q > 0
and m > �q/(q + 1), there holds W02ð0Þ ¼ W02ð1Þ ¼ 0. [These indeed follow from the facts that W2,S(t) =
O(t(m+1)(q+1)) as t! 0+, and p � W2,S(t) = O((1 � t)q+1) as t! 1 � .] These facts and bF ðt;/Þ ¼ F ðWðtÞ;
/ÞW0ðtÞ imply that bF ð0;/Þ ¼ bF ð1;/Þ ¼ 0. This means that the summation

P00n
j¼0 in (1.25) can be written

as
Pn�1

j¼1 . As a result, the rule in (1.25) becomes bT n;n0 ½f � given in (1.16).
2. The variable transformation W1(t) in the present work is the same as that given in [9]. The transformation

W2(t) given here is different from that of [9], however. With W2(t) of [9], we have W02ð0Þ 6¼ 0 when l = +1
and W02ð1Þ 6¼ 0 when l = �1. This implies that, to form bT n;n0 ½f �, we need to compute F(0,/) when l = +1
and F(p,/) when l = �1. This computation must be done separately, because these values of F(h,/) can
be computed only as limits as Q! P when S is arbitrary. (As shown in [9], when S = U, they are available
immediately.) Because we want to obviate the need to do extra computation (or programming), we have cho-
sen to modify W2(t) as in (1.23) and (1.24) so that W02ð0Þ ¼ W02ð1Þ ¼ 0, which forces bF ð0;/Þ ¼ bF ð1;/Þ ¼ 0,
whether P is the mapping of the north pole or of the south pole, as mentioned above.

3. With W2,S(t) available, we can obtain W2,N(t) as follows:
Z p

0

vðhÞdh ¼
Z p

0

vðp� hÞdh ¼
Z 1

0

vðp�W2;SðtÞÞW02;SðtÞdt ¼
Z 1

0

vðp�W2;Sð1� tÞÞW02;Sð1� tÞdt

¼
Z 1

vðW2;NðtÞÞW02;NðtÞdt.

0

The variable transformations h = W(t) above turn out to be very effective in that the accuracy of bT n;n0 ½f �
increases with increasing m, and in a subtle way. For some special values of m, unusually high accuracies
are achieved, as we will see later. Also, the approximations produced with W2(t) have better accuracies than
those produced with W1(t).

The plan of this paper is as follows: In the next section, we give a preliminary analysis of bT n;n0 ½f �, in which

we show that it is sufficient to analyze the trapezoidal rule for the one-dimensional integral
R 1

0
v̂ðtÞdt, where

v̂ðtÞ ¼ vðWðtÞÞW0ðtÞ with vðhÞ ¼
R 2p

0 F ðh;/Þd/. In Section 3, which is a most important (and, theoretically,
the most involved) part of this work, we give a detailed analysis of the transformed integrand F(h,/). The
main result of this section is Theorem 3.9. In Section 4, we analyze the asymptotic behavior of the integral
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v(h) as h! 0 and as h! p, Theorem 4.2 being the main result of this section. In Sections 5 and 6, we provide
the complete analysis of the rule bT n;n0 ½f �, Theorem 5.1 [for W1(t)] and Theorem 6.2 [for W2(t)] being the main
results. In Section 7, we provide a numerical example with both W1(t) and W2(t), and verify the validity of our
theoretical results.

Before closing, we mention that the basic method described above is related to a recent method of Atkinson
[3]. As it turns out, the numerical performance of our basic method with W(t) = W1(t) is very similar to that of
[3], and some of the theoretical results of Section 5 concerning our basic method are analogous to those of [3].
There is no analogue of our method with W(t) = W2(t) and its corresponding theory in [3], however. One of the
major differences between the methods of the present paper and that of [3] is that in the present paper, the
variable h on the unit sphere is transformed (by a variable transformation in the extended class Sm), whereas
in [3], h is ‘‘graded’’ in a special and interesting way by the introduction of a grading parameter q, instead of
being transformed. The convergence analysis of the numerical integration formula for the case in which f(Q) is
smooth has been given recently by Atkinson and Sommariva [4] (for S = U and for certain values of q) and by
Sidi [8] (for arbitrary S and for all values of q).

Note that the extended class Sm of [10] for arbitrary m is indeed an extension of that first introduced in Sidi
[5] with integer m. It is described briefly also in [9,11].

Finally, this paper is partly based on the report [6] by the author.
2. Preliminary results on bTn;n0 ½f �

Let us define
vðhÞ ¼
Z 2p

0

F ðh;/Þd/; v̂ðtÞ ¼
Z 2p

0

bF ðt;/Þd/. ð2:1Þ
Thus,
v̂ðtÞ ¼ v WðtÞð ÞW0ðtÞ; I ½f � ¼
Z p

0

vðhÞdh ¼
Z 1

0

v̂ðtÞdt. ð2:2Þ
As we show in Theorem 3.9 in the next section, despite the singularity of f(Q) at the point P 2 S, the function
F(h,/) is infinitely differentiable as a function of both h 2 [0,p] and / 2 (�1,1), and also 2p-periodic as a
function of /. [Recall that the point P = (n0,g0,f0) is the mapping of the north pole (h = 0) or of the south
pole (h = p) of the transformed U.] This being the case, the developments of [11, Section 3] apply, and we have
that
bT n;n0 ½f � ¼ eT n½f � þOðh0mÞ as h0 ! 0; for every m > 0; ð2:3Þ
where
eT n½f � ¼ h
Xn

j¼0

00
Z 2p

0

bF ðjh;/Þd/ ¼ h
Xn

j¼0

00
v̂ðjhÞ. ð2:4Þ
(Recall that the double prime on the summation
P00n

j¼0 means that the j = 0 and j = n terms are to be multiplied
by 1/2.) Thus, if we let n 0 � anb as n!1 for some fixed positive a and b, then (2.3) becomes
bT n;n0 ½f � ¼ eT n½f � þOðhmÞ as h! 0 for every m > 0. ð2:5Þ

In the sequel, we let n 0 � anb as n!1.

As is clear from (2.5), the error in bT n;n0 ½f � as h! 0 has the same asymptotic expansion as that of eT n½f �.
Thus, we need to concern ourselves only with the asymptotic expansion as h! 0 of eT n½f �, the trapezoidal rule
approximation to the one-dimensional integral

R 1

0
v̂ðtÞdt. For this, we need to study v̂ðtÞ as t! 0+ and t! 1�,

by [11, Theorem A.2]. For this, in turn, we need to expand bF ðt;/Þ about t = 0 and t = 1. This we do by
expanding v(h) about h = 0 and h = p, for which we need to expand F(h,/) about h = 0 and h = p.
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Throughout, we make use of the fact that the sequence fðsin hÞig1i¼1 is a bona fide asymptotic scale both as
h! 0 and as h! p.

3. The transformed integrand

In this section, we do an asymptotic analysis as h! 0 and as h! p of the integrand F(h,/) in (1.12). This
analysis will help us in determining the precise nature of the asymptotic expansions of v(h) as h! 0 and as
h! p, respectively. We achieve this by studying the different factors that make up F(h,/). Definition 3.1
and Lemmas 3.2 and 3.3 that follow serve to simplify the analysis.

Definition 3.1. We say that a function A(h,/) belongs to the set K if it is infinitely differentiable for 0 6 h 6 p
and �1 6 / 61 and 2p-periodic in /, and is of the form
Aðh;/Þ ¼ M1ðh;/Þ þM2ðh;/Þ cos / sin /þ N 1ðh;/Þ cos /þ N 2ðh;/Þ sin /;
where the functions Ms(h,/) and Ns(h,/) have asymptotic expansions of the form
Msðh;/Þ �
X1
i¼0

csið/Þh2i as h! 0; s ¼ 1; 2;

Nsðh;/Þ �
X1
i¼0

dsið/Þh2iþ1 as h! 0; s ¼ 1; 2;
csi(/) and dsi(/) being p-periodic and even functions of /, and infinitely differentiable for / 2 (�1,1).

Lemma 3.2 that follows is easy to prove; we leave its verification to the reader. The observation that
(cos/)i(sin/)j is even and p-periodic in / only when both i and j are even integers is helpful in this verification.

Lemma 3.2. If A1(h,/) and A2(h,/) are in the set K, then so are their sum and their product.

Lemma 3.3. Let W ð~x; ~y;~zÞ be infinitely differentiable about the point ð~x; ~y;~zÞ ¼ ð0; 0; 1Þ on (the transformed) U.

Then, with ð~x; ~y;~zÞ ¼ ðsin h cos /; sin h sin /; cos hÞ [recall (1.10)], the function Aðh;/Þ � W ð~x; ~y;~zÞ is in the set

K.

Proof. We start by noting that, ~z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~x2 � ~y2

p
is an infinitely differentiable function of ~x and ~y in any neigh-

borhood of the point ð~x; ~yÞ ¼ ð0; 0Þ. This implies that W ð~x; ~y;~zÞ is also an infinitely differentiable function of
the variables ~x and ~y in any neighborhood of ð~x; ~y;~zÞ ¼ ð0; 0; 1Þ on (the transformed) U. As such, we denote it
by eW ð~x; ~yÞ. Let us now expand eW ð~x; ~yÞ in a Taylor series about (0, 0) (equivalently, at h = 0). We obtain
eW ð~x; ~yÞ �X1
i;jP0

eW i;j~xi~yj as ð~x; ~yÞ ! ð0; 0Þ; eW i;j ¼
1

i!j!
o

iþj eW
o~xio~yj

�����
ð~x;~yÞ¼ð0;0Þ

. ð3:1Þ
In terms of h and /, this can be expressed as in
eW ð~x; ~yÞ ¼ Aðh;/Þ �
X1
i;jP0

eW i;jðsin hÞiþjðcos /Þiðsin /Þj as h! 0. ð3:2Þ
We observe that the summation on i and j in (3.2) can be divided into four summations: The first, second,
third, and fourth summations contain the terms with, respectively, i and j both even, i and j both odd, i

odd and j even, and i even and j odd. Thus, they can immediately be identified with, respectively, M1(h,/),
M2(h,/)cos/sin/, N1(h,/)cos/, and N2(h,/)sin/ in Definition 3.1. For example,
N 1ðh;/Þ �
X1
s¼0

X
i;jP0
iþj¼s

eW 2iþ1;2jðcos /Þ2iðsin /Þ2j

2664
3775ðsin hÞ2sþ1 as h! 0.
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[Note that (cos/)2i(sin/)2j, i, j = 0,1,2, . . . , are even p-periodic functions of / and are infinitely differentiable
for / 2 (�1,1). Similarly, (sinh)r, as h! 0, has an asymptotic expansion in even (odd) powers of h when r is
an even (odd) integer.] We leave the details to the reader. h
3.1. The function g(Q)

We start with g(Q) = g(n,g,f), as this is the simplest part. We have already assumed that g(Q) is infinitely
differentiable on S. Because the transformations from the coordinates ð~x; ~y;~zÞ to (x,y,z) and from (x,y,z) to
(n,g,f) are one-to-one and infinitely differentiable, g(Q) is an infinitely differentiable function of ~x; ~y;~z over U.
Therefore, Lemma 3.3 applies to g(Q), and g(Q) = A1(h,/) for some A1ðh;/Þ 2K.

3.2. The vector oq

oh �
oq

o/ and the function k oq

oh �
oq

o/ k

For simplicity of notation, let us denote (n,g,f) by (n1,n2,n3), (x,y,z) by (x1,x2,x3), and ð~x; ~y;~zÞ by
ð~x1;~x2;~x3Þ. Thus,
~r ¼ ½~x; ~y;~z�T ¼ ½~x1;~x2;~x3�T; ð~x1;~x2;~x3Þ ¼ ðsin h cos /; sin h sin /; cos hÞ;
q ¼ n; g; f½ �T ¼ ½n1ðx1; x2; x3Þ; n2ðx1; x2; x3Þ; n3ðx1; x2; x3Þ�T.
Thus, oni/oxj is the (i, j) element of the Jacobian matrix J(x1,x2,x3) in (1.6). It is now easy to see that the
Jacobian matrix of the mapping from the transformed U to S is
eJ ð~x1;~x2;~x3Þ ¼ Jðx1; x2; x3ÞH ;

its (i, j) element being oni=o~xj ¼

P3
k¼1ðoni=oxkÞ½H �kj. By Theorem 2.1 in [11] and Lemma 3.3, we can now state

the following result:

Theorem 3.4. Let e$u denote the gradient of the function uð~x1;~x2;~x3Þ, that is, e$u ¼ ðou=o~x1; ou=o~x2; ou=o~x3Þ.
Define
~rij ¼ e$ni � e$nj

	 

� ~r; eRð~x1;~x2;~x3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2

23 þ ~r2
31 þ ~r2

12

q
. ð3:3Þ
Then
oq

oh
� oq

o/
¼ ½~r23; ~r31; ~r12�T sin h;

oq

oh
� oq

o/

���� ���� ¼ eRð~x1;~x2;~x3Þ sin h. ð3:4Þ
With S as in the first paragraph of Section 1, eRð~x1;~x2;~x3Þ is strictly positive on the transformed U and is in

C1(U). Consequently, eRð~x1;~x2;~x3Þ, as a function of /, is infinitely differentiable and 2p-periodic as well. As a

result, we also have that eRð~x1;~x2;~x3Þ ¼ A2ðh;/Þ for some A2ðh;/Þ 2K.

Now, the computation of oq/oh · oq/o/ and eRð~x1;~x2;~x3Þ can be simplified as in Theorem 3.5 that follows:

Theorem 3.5. Let r = [x1,x2,x3]T and let $u denote the gradient of the function u(x1,x2,x3), that is,
$u ¼ ðou=ox1; ou=ox2; ou=ox3Þ. Define
rij ¼ ð$ni � $njÞ � r and Rðx1; x2; x3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

23 þ r2
31 þ r2

12

q
. ð3:5Þ
Then
~rij ¼ ðdet HÞrij; hence eRð~x1;~x2;~x3Þ ¼ Rðx1; x2; x3Þ. ð3:6Þ
Consequently,
oq

oh
� oq

o/
¼ ðdet HÞ½r23; r31; r12�T sin h;

oq

oh
� oq

o/

���� ���� ¼ Rðx1; x2; x3Þ sin h. ð3:7Þ
We give the proof of this result in Appendix to this work.
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3.3. The singular factors

We now come to the analysis of the singular factors V(Q) � f(Q)/g(Q),
V ðQÞ ¼ 1

jQ� P j ðsingle-layerÞ; V ðQÞ ¼ ðQ� P Þ � nQ

jQ� P j3
ðdouble-layerÞ. ð3:8Þ
It is these factors that make the study of v(h) and hence of bT n;n0 ½f � difficult.
We will give the full treatment with l = +1 in (1.8), that is, with the point of singularity P 2 S being the

mapping of ð~x; ~y;~zÞ ¼ ð0; 0; 1Þ hence of h = 0 in the transformed U; the treatment of the case l = �1 is
analogous.
3.3.1. Study of Q � P and jQ � Pjb
First, it is obvious from our assumptions that Q � P is infinitely differentiable as a function of ~x; ~y;~z, hence

also as a function of h and /, and is 2p-periodic in /, and vanishes only when h = 0.
We would now like to investigate the nature of the dependence of Q � P on h and / as h! 0 in case

l = +1. Recalling that ~z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~x2 � ~y2

p
, in every small neighborhood of ð~x; ~y;~zÞ ¼ ð0; 0; 1Þ, we can view

Q = (n,g,f) as an infinitely differentiable function of ~x and ~y. Thus,
Q ¼ q ¼ ~qð~x; ~yÞ; P ¼ q0 ¼ ~qð0; 0Þ.
Expanding ~qð~x; ~yÞ a in a Taylor series about ð~x; ~yÞ ¼ ð0; 0Þ, we have
Q� P ¼ ~qð~x; ~yÞ � ~qð0; 0Þ �
X
i;jP0

iþjP1

~qi;j~xi~yj as h! 0; ~qi;j ¼
1

i!j!
oiþj~q

o~xio~yj

����
ð~x;~yÞ¼ð0;0Þ

. ð3:9Þ
Using the chain rule for partial derivatives, and using the fact that o~z=o~x and o~z=o~y both vanish at
ð~x; ~yÞ ¼ ð0; 0Þ, it can be shown that the linear terms in this series satisfy
~q1;0~xþ ~q0;1~y ¼ eJ 0

~x

~y

0

264
375; eJ 0 ¼ Jðx0; y0; z0ÞH . ð3:10Þ
Thus,
Q� P ¼ sin h eJ 0rð/Þ þOðhÞ
h i

as h! 0; rð/Þ ¼
cos /

sin /

0

264
375. ð3:11Þ
Note that r(/) 5 0 and the matrix eJ 0 is nonsingular. As a result, Q � P has a simple zero at h = 0, and so does
jQ � Pj.

Lemma 3.6. Let l = + 1 in (1.8). Then for every b, there holds
jQ� P jb ¼ ðsin hÞbA3ðh;/Þ for some A3ðh;/Þ 2K.
Proof. Let B ¼ eJ T
0
eJ 0 ¼ ½bij�3i;j¼1. Because eJ 0 is a nonsingular matrix, B is a real symmetric positive definite

matrix. Then, by (3.9),
jQ� P j2 ¼ ðQ� P ÞTðQ� P Þ �
X
i;jP0
iþjP2

xi;j~xi~yj as h! 0; ð3:12Þ
where x2,0 = b11, x0,2 = b22, and x1,1 = b12 = b21 by (3.10). Using the fact that
~xi~yj ¼ ðsin hÞiþjðcos /Þiðsin /Þj ¼ OðhiþjÞ as h! 0;
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we rearrange the expansion of jQ � Pj2 in (3.12) according to the size of its terms as h! 0. We obtain,
jQ� P j2 �
X1
s¼2

csðh;/Þ as h! 0; ð3:13Þ
where
c2ðh;/Þ ¼ x2;0~x2 þ x0;2~y2 þ 2x1;1~x~y ¼ b11~x2 þ b22~y2 þ 2b12~x~y;

csðh;/Þ ¼
X
i;jP0
iþj¼s

xi;j~xi~yj; s ¼ 3; 4; . . . ð3:14Þ
In terms of h and /, we have
c2ðh;/Þ ¼ ðsin hÞ2½b11 cos2 /þ b22 sin2 /þ 2b12 cos / sin /�;
csðh;/Þ ¼ ðsin hÞs

X
i;jP0
iþj¼s

xi;jðcos /Þiðsin /Þj; s ¼ 3; 4; . . . ð3:15Þ
Clearly, cs(h,/) is a sum of products (cos/)i(sin/)j with i + j even (odd) when s is even (odd), and its expan-
sion about h = 0 contains only even (odd) powers of h when s is even (odd). In addition, cs(h,/) = O(hs) as
h! 0. Also note that, with i and j even integers, the product (cos/)i(sin/)j is an even and p-periodic function
of /.

We now rewrite c2(h,/) in the form
c2ðh;/Þ ¼ cð1Þ2 ðh;/Þ þ cð2Þ2 ðh;/Þ;
cð1Þ2 ðh;/Þ ¼ ðsin hÞ2½b11 cos2 /þ b22 sin2 /�; cð2Þ2 ðh;/Þ ¼ ðsin hÞ2½2b12 cos / sin /�;

ð3:16Þ
and let
H 0ðh;/Þ ¼
cð2Þ2 ðh;/Þ
cð1Þ2 ðh;/Þ

¼ 2b12 cos / sin /

b11 cos2 /þ b22 sin2 /
;

Hsðh;/Þ ¼
csþ2ðh;/Þ
cð1Þ2 ðh;/Þ

¼ ðsin hÞs
P

i;jP0
iþj¼sþ2

xi;jðcos /Þiðsin /Þj

b11 cos2 /þ b22 sin2 /
; s ¼ 1; 2; . . .

ð3:17Þ
(Note that, b11 cos 2/ + b22 sin 2/ 5 0 for all / because b11 > 0 and b22 > 0 by the positive definiteness of B.) In
addition,
jH 0ðh;/Þj 6
jb12jffiffiffiffiffiffiffiffiffiffiffiffi
b11b22

p � m < 1; H sðh;/Þ ¼ OðhsÞ ¼ oð1Þ as h! 0; s ¼ 1; 2; . . . ð3:18Þ
The assertion that m < 1 follows from (i) the fact that the maximum of jH0(h,/)j is m and (ii) the fact that the
matrix B is positive definite, hence b11b22 � b2

12 > 0. In terms of the bH ðh;/Þ, we now re-express the expansion
of jQ � Pj2 in (3.13) as in
jQ� P j2 ¼ cð1Þ2 ðh;/Þ½1þ bH ðh;/Þ�; bH ðh;/Þ �X1
s¼0

Hsðh;/Þ as h! 0. ð3:19Þ
First, from the structure of the Hs(h,/), we conclude that bH ðh;/Þ is in K and so is 1þ bH ðh;/Þ. Next, clearly,bH ðh;/Þ ¼ H 0ðh;/Þ þ oð1Þ as h! 0. By this and by the fact that jH0(h,/)j 6 m < 1, we have that
j bH ðh;/Þj 6 m0 < 1 for some m 0 > m and all small h. Thus, we can apply the binomial theorem to (3.19), to obtain
the following convergent series representation that is valid for all small h:
jQ� P jb ¼ ðsin hÞbðb11 cos2 /þ b22 sin2 /Þb=2
X1
k¼0

b=2

k

� �
½ bH ðh;/Þ�k. ð3:20Þ
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By repeated application of Lemma 3.2 to the terms ½ bH ðh;/Þ�k, k = 0,1, . . ., we conclude that this summation
represents a function in K. Observing that the factor (b11 cos 2/ + b22 sin 2/)b/2 in (3.20) is an even and p-peri-
odic function of / and is independent of h, we complete the proof. We leave the details to the reader. h
3.3.2. Study of (Q � P) Æ nQ

Let us treat the variables ~x and ~y as the parameters that describe S. Thus, the outward normal nQ to S at the
point Q ¼ ~qð~x; ~yÞ is given by
nQ ¼
Lð~x; ~yÞ
kLð~x; ~yÞk ; Lð~x; ~yÞ ¼ o~qð~x; ~yÞ

o~x
� o~qð~x; ~yÞ

o~y
. ð3:21Þ
Then, remembering that P 2 S, and that it is the image in (transformed) U (with l = +1) of the point with
coordinates ð~x; ~y;~zÞ ¼ ð0; 0; 1Þ, we have
o~qð~x; ~yÞ
o~x

�
X1
i;jP0

ðiþ 1Þ~qiþ1;j~xi~yj as h! 0;

o~qð~x; ~yÞ
o~y

�
X1
i;jP0

ðjþ 1Þ~qi;jþ1~xi~yj as h! 0;
with ~qi;j as defined in (3.9). Consequently,
Lð~x; ~yÞ � a0;0 þ
X1
i;jP0

iþjP1

ai;j~xi~yj as h! 0; a0;0 ¼ ~q1;0 � ~q0;1; ð3:22Þ
where ai,j are constant vectors and a0,0 is a nonzero vector in the direction of nP. Hence
kLð~x; ~yÞkb ¼ ka0;0 þ oð1Þkb as h! 0, and, therefore,
kLð~x; ~yÞkb ¼ D1ðh;/Þ for some D1ðh;/Þ 2K; for every b. ð3:23Þ

From (3.9), we have
Q� P ¼ ~q1;0~xþ ~q0;1~yð Þ þ ~q2;0~x2 þ ~q1;1~x~y þ ~q0;2~y2
� �

þMð~x; ~yÞ; ð3:24Þ
where Mð~x; ~yÞ has a Taylor series expansion about (0, 0) that contains the powers ~xi~yj, i + j P 3. Because
a0;0 ¼ ~q1;0 � ~q0;1 is orthogonal to ~q1;0 and ~q0;1, and because ~xi~yj ¼ ðsin hÞiþjðcos /Þiðsin /Þj ¼ OðhiþjÞ as
h! 0, by (3.22) and (3.24), we obtain in terms of the variables h and /
ðQ� P Þ � Lð~x; ~yÞ ¼ D2ðh;/Þ sin2 h for some D2ðh;/Þ 2K. ð3:25Þ

Combining (3.21), (3.23), and (3.25), and proceeding as before, we obtain the following result:

Lemma 3.7. Let l = +1 in (1.8). Then
ðQ� P Þ � nQ ¼ ðsin hÞ2Dðh;/Þ for some Dðh;/Þ 2K.
3.3.3. Asymptotic expansions of the singular factors V(Q)

Using Lemmas 3.2, 3.6, and 3.7, we obtain the following result concerning the singular factors in (3.8):

Lemma 3.8. Let l = + 1 in (1.8). Then
V ðQÞ ¼ V ðn; g; fÞ ¼ ðsin hÞ�1A4ðh;/Þ for some A4ðh;/Þ 2K.
3.4. Asymptotic expansions of F(h,/)

We now combine the results that we obtained above in F(h,/). Let us recall that
F ðh;/Þ ¼ gðn; g; fÞeRð~x; ~y;~zÞV ðn; g; fÞ sin h. ð3:26Þ
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By the fact that gðn; g; fÞ ¼ A1ðh;/Þ 2K, eRð~x; ~y;~zÞ ¼ A2ðh;/Þ 2K, by Lemma 3.8, and by Lemma 3.2, we
have that F ðh;/Þ ¼ Aðh;/Þ 2K when l = + 1 in (1.8). This result, of course, concerns the behavior of
F(h,/) as h! 0 only. As for the behavior of F(h,/) as h! p, by the fact that g(n,g,f), eRð~x; ~y;~zÞ, and
V(n,g,f) are all infinitely differentiable in every small neighborhood of ð~x; ~y;~zÞ ¼ ð0; 0;�1Þ, it follows from
the developments in [11, Section 3] that F(h,/) = (sinh)A 0(p � h,/) for some A0ðh;/Þ 2K. The complete de-
tails are given in Theorem 3.9 below, whose proof is left to the reader.

Theorem 3.9. The transformed integrand F(h,/) is infinitely differentiable for all h and /. Furthermore,

(i) When l = + 1 in (1.8), the integrand F(h,/) satisfies
F ðh;/Þ ¼ Dþ0 ðh;/Þ for some Dþ0 ðh;/Þ in K;

F ðh;/Þ ¼ ðp� hÞDþp ðp� h;/Þ for some Dþp ðh;/Þ in K.
ð3:27Þ
(ii) When l = �1 in (1.8), the integrand F(h,/) satisfies
F ðh;/Þ ¼ hD�0 ðh;/Þ for some D�0 ðh;/Þ in K;

F ðh;/Þ ¼ D�p ðp� h;/Þ for some Dþp ðh;/Þ in K.
ð3:28Þ
Note that the first of the relations in (3.27) and (3.28) concern the asymptotic expansions of F(h,/) as h! 0
and the second ones concern the asymptotic expansions of F(h,/) as h! p.

4. Asymptotic expansions of v(h)

We next consider the asymptotic behavior of v(h), which, we recall, is given by
vðhÞ ¼
Z 2p

0

F ðh;/Þd/;
as h! 0 and h! p. This we achieve by using Lemma 3.1 in [11] (originally, Lemma 3.1 in [6]), which we
reproduce here for convenience as Lemma 4.1.

Lemma 4.1. Let M(/) be an even and p-periodic function of /. Define u(/) = M(/)(cos/)i(sin/)j and

qi;j ¼
R 2p

0 uð/Þd/. If i or j or both are odd integers, then qi,j = 0. Thus, qi,j is possibly nonzero if and only if i and j

are both even integers.

An important implication of Lemma 4.1 that concerns functions Aðh;/Þ 2K (precisely as in Definition
3.1) is the following:
Z 2p

0

Aðh;/Þd/ �
X1
i¼0

Z 2p

0

c1ið/Þd/

� �
h2i as h! 0. ð4:1Þ
Note that the only contribution to the asymptotic expansion of
R 2p

0 Aðh;/Þd/ comes from M1(h,/); M2(h,/),
N1(h,/), and N2(h,/) contribute nothing by Lemma 4.1.

Theorem 4.2 below, whose proof we leave to the reader, follows from Theorem 3.9 and (4.1). It also covers
Theorems 3.1 and 3.2 in [9] as a special case.

Theorem 4.2

(i) When l = + 1 in (1.8), the integral v(h) satisfies
vðhÞ �
X1
i¼0

lðþ;0Þi h2i as h! 0; vðhÞ �
X1
i¼0

lðþ;pÞi ðp� hÞ2iþ1
as h! p. ð4:2Þ
(ii) When l = �1 in (1.8), the integral v(h) satisfies
vðhÞ �
X1
i¼0

lð�;0Þi h2iþ1 as h! 0; vðhÞ �
X1
i¼0

lð�;pÞi ðp� hÞ2i
as h! p. ð4:3Þ
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5. Study of bTn;n0 [ f ] under W1(t)

We now analyze the behavior of bT n;n0 ½f � as h! 0 for W(t) = W1(t) defined in (1.23). Theorem 5.1 that fol-
lows and that is the main result of this section is essentially Theorem 4.1 in [9].

For the details of the proof, we refer the reader to [9].

Theorem 5.1. Let wðtÞ 2 Sm. With W(t) = W1(t) = pw(t) and with n 0 � anb as n!1 for some fixed positive a
and b, there holds
bT n;n0 ½f � � I ½f � ¼ Oðh2mþ2Þ as h! 0; if m even integer,

Oðhmþ1Þ as h! 0; otherwise.

(

For m an even integer, we also have the complete Euler–Maclaurin expansion
bT n;n0 ½f � � I ½f � þ
X1
i¼0

qih
2mþ2þ2i as h! 0.
Note the better accuracy that bT n;n0 ½f � can achieve when m is an even integer.
6. Study of bTn;n0 [ f ] under W2(t)

We next analyze the behavior of bT n;n0 ½f � as h! 0 for W(t) = W2(t) defined (1.24). This analysis requires a
good understanding of the properties of W2(t). Therefore, we study W2(t) first. As can be verified, it is enough
to study the case that suits the mapping of the south pole of the transformed U to the point of singularity P on
S, that is, the case l = �1 in (1.8). We recall that, in this case, W2ðtÞ ¼ W2;SðtÞ ¼ 2pwð1

2
-ðtÞÞ, where - 2 Sq

and w 2 Sm, with q > 0 an even integer and m > �q/(q + 1) but arbitrary otherwise.
Below, we will make use of the following facts concerning w 2 Sm:
wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðtÞ > 0 for t 2 ð0; 1Þ; ð6:1Þ
w0ð1� tÞ ¼ w0ðtÞ; wð1� tÞ ¼ 1� wðtÞ; ð6:2Þ

wðtÞ �
X1
i¼0

aitmþ2iþ1 as t! 0þ; ð6:3Þ

wðtÞ � 1�
X1
i¼0

aið1� tÞmþ2iþ1 as t! 1� . ð6:4Þ
From (6.2), it follows that
w
1

2

� �
¼ 1

2
; wð2kÞ 1

2

� �
¼ 0; k ¼ 1; 2; . . . ; ð6:5Þ
so that
wðtÞ � 1

2
þ
X1
k¼0

bk
1

2
� t

� �2kþ1

as t! 1

2
. ð6:6Þ
Lemma 6.1. The function W2,S(t) has the asymptotic expansions
W2;SðtÞ �
X1
i¼0

citMþ2iþ1 as t! 0þ; M ¼ ðqþ 1Þðmþ 1Þ � 1; ð6:7Þ
and
W2;SðtÞ � p�
X1
i¼0

dið1� tÞqþ2iþ1
as t! 1� . ð6:8Þ
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Therefore, there also hold
W02;SðtÞ �
X1
i¼0

c0it
Mþ2i as t! 0þ; ð6:9Þ
and
W02;SðtÞ �
X1
i¼0

d 0ið1� tÞqþ2i
as t! 1� . ð6:10Þ
Proof. We start by observing that, by (6.3),
-ðtÞ �
X1
i¼0

~aitqþ2iþ1 as t! 0þ; ð6:11Þ
so that -(t) = O(tq+1) = o(1) as t! 0+ since q > 0. Thus, again by (6.3),
W2;SðtÞ � 2p
X1
i¼0

ai
1

2
-ðtÞ

� �mþ2iþ1

as t! 0þ . ð6:12Þ
Substituting (6.11) in (6.12), and re-expanding in powers of t, and realizing that
uðtÞ �
X1
i¼0

ditsþ2i as t! 0þ ) ½uðtÞ�a �
X1
i¼0

eitasþ2i as t! 0þ; ð6:13Þ
we obtain the result in (6.7).
For the proof of (6.8), we proceed as follows: By (6.4), we have
-ðtÞ � 1�
X1
i¼0

~aið1� tÞqþ2iþ1 as t! 1�; ð6:14Þ
hence limt!1�½12 -ðtÞ� ¼ 1
2
. By this and by (6.6), there holds
W2;SðtÞ � p� 2p
X1
k¼0

bk
1

2
� 1

2
-ðtÞ

� �2kþ1

as t! 1� . ð6:15Þ
Substituting (6.14) in (6.15), and re-expanding in powers of t with (6.13) in mind, we obtain the result in
(6.8). h

Theorem 6.2 that follows and that is the main result of this section is the analogue of Theorem 4.2 in [9].

Theorem 6.2. With W(t) = W2,S(t) when l = �1 in (1.8), or W(t) = W2,N(t) when l = + 1 in (1.8), and with

n 0 � anb as n!1 for some fixed positive a and b, there holds
bT n;n0 ½f � � I ½f � ¼ Oðh4Mþ4Þ as h! 0; if 2M odd integer,

Oðh2Mþ2Þ as h! 0; otherwise,

(
ð6:16Þ
where M = (m + 1)(q + 1) � 1, as in (6.7). For 2M an odd integer, we also have the complete Euler–Maclaurin

expansion
bT n;n0 ½f � � I ½f � þ
X1
i¼0

qih
4Mþ4þ2i as h! 0. ð6:17Þ
Remark. Note that, because q is an (even) integer, 2M can be an odd integer if and only if 2(q + 1)m is an odd
integer. Thus, when q = 2, which is the value we have chosen for q in our numerical examples, 2M is an odd
integer if and only if 6m is an odd integer.
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Proof. As we have seen earlier, we have to analyze the asymptotic behavior of eT n½f �, the trapezoidal rule
approximation of the one-dimensional integral,

R 1

0
v̂ðtÞdt, where v̂ðtÞ ¼ vðWðtÞÞW0ðtÞ. Here, we give the proof

for the case l = �1, hence W(t) = W2,S(t). In this case, v(h) has the asymptotic expansions given in (4.3) in
Theorem 4.2. Thus,
v̂ðtÞ � W0ðtÞ
X1
i¼0

lð�;0Þi WðtÞ½ �2iþ1 as t! 0þ; ð6:18Þ

v̂ðtÞ � W0ðtÞ
X1
i¼0

lð�;pÞi p�WðtÞ½ �2i as t! 1� . ð6:19Þ
Substituting the asymptotic expansions of W2,S(t) given in (6.7) and (6.8) and those of W02;SðtÞ given in (6.9) and
(6.10), and re-expanding in powers of t, we obtain
v̂ðtÞ �
X1
i¼0

tMþðMþ1Þð2iþ1Þ
X1
j¼0

ai;jt2j

 !
as t! 0þ; ð6:20Þ

v̂ðtÞ �
X1
i¼0

bið1� tÞqþ2i as t! 1�; ð6:21Þ
Recalling that q is an even integer, and applying Corollary 2.2 of [7] (see, also Theorem 4.4 of [10]), we obtain
the results in (6.16). h

As mentioned in [10], a fair comparison of the effects of two variable transformations demands that their
abscissas should have similar amounts of clustering at the endpoints of the integration interval. As mentioned
in the same paper, the clustering of the abscissas at the endpoints t = 0 and t = 1 is determined directly by the
asymptotic behavior (as t! 0+ and/or t! 1�) of the variable transformation used. Now, W1(t) = O(tm+1) as
t! 0+ and W1(t) = O((1 � t)m+1) as t! 1�. Similarly, when l = �1 (and it is enough to look only at this
case) W2,S(t) = O(tM+1) as t! 0+ and W2,S(t) = O((1 � t)q+1) as t! 1�, and because M P q when m P 1,
the amount of clustering is largest at t = 0. The conclusion from this is that a fair comparison of the effects
of W1(t) and W2(t) can be made when M = (m + 1)(q + 1) � 1 for W2(t) is the same as m in W1(t). Thus, by
Theorems 5.1 and 6.2, the rule bT n;n0 ½f � with W2(t) is always superior to that with W1(t).
7. Numerical example

Let S be the surface of the ellipsoid whose equation is (n/a)2 + (g/b)2 + (f/c)2 = 1, and let f(Q) =
g(Q)/jQ � Pj, with g(Q) = g(n,g,f) = exp[0.1(n + 2g + 3f)]. We take (a,b,c) = (1, 2,3) and P ¼ ðn0; g0; f0Þ ¼
ð1=2; 1; 3=

ffiffiffi
2
p
Þ 2 S, and consider the computation of the integral
I ½f � ¼
Z Z

S

f ðQÞdAS ¼ 38:2549189698039 . . . .
This is one of the numerical examples treated in [3].
We take the mapping of U to S to be
ðn; g; fÞ ¼ ðax; by; czÞ;
by which, P is the mapping of
ðx0; y0; z0Þ ¼ ðn0=a; g0=b; f0=cÞ ¼ ð1=2; 1=2; 1=
ffiffiffi
2
p
Þ 2 U .
This point is mapped to the south pole via the (orthogonal) Householder matrix H,
H ¼ I � 2ppT; p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2
pp 1=2

1=2

1=
ffiffiffi
2
p
þ 1

264
375;
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precisely as in (1.17), that is,
Table
Relativ
m = 1(

n

2
4
8

16
32
64

128
256
512

The tr

Table
The nu

k

1
2
3
4
5
6
7
8

x0

y0

z0

264
375 ¼ lH

0

0

1

264
375; l ¼ �1.
The function R(x,y,z) is given as in
Rðx; y; zÞ ¼ ½ðbcxÞ2 þ ðcayÞ2 þ ðabzÞ2�1=2
;

x

y

z

264
375 ¼ H

~x

~y

~z

264
375.
Clearly, because S is infinitely smooth and g(Q) is infinitely differentiable over S, Theorems 5.1 and 6.2 apply.
The function w(t) we use in constructing the variable transformation W(t)—whether W1(t) or W2(t)—for the

variable h is the extended sinm-transformation for various values of m. This transformation has been used in
the numerical examples of [11,9]. The function -(t) used in constructing the variable transformation W2(t) is
the sinq-transformation. We have chosen the simplest case of q = 2 for which -(t) = t � (sin2pt)/(2p).

The numerical results in Tables 1 and 2, which were computed via W1(t) = pw(t), and the results in Tables 3
and 4, which were computed via W2;SðtÞ ¼ 2pwð1

2
-ðtÞÞ, in quadruple-precision arithmetic, illustrate the conclu-

sions of, respectively, Theorems 5.1 and 6.2 very clearly. Tables 1 and 3 give the relative errors in thebT n½f � � bT n;n½f �, n = 2k, k = 1,2, . . . , 9, for various values of m. Tables 2 and 4 present the numbers
lm;k ¼
1

log 2
� log

jbT 2k ½f � � I ½f �j
jbT 2kþ1 ½f � � I ½f �j

 !
1
e errors in the rules bT n½f � ¼ bT n;n½f � for the integral of Section 7, obtained via the transformation W1(t) with n = 2k, k = 1(1)9, and
1)10

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

6.22D + 00 1.84D + 01 2.85D + 01 3.73D + 01 4.51D + 01 5.24D + 01 5.90D + 01 6.53D + 01 7.12D + 01 7.68D + 01
1.40D + 00 1.62D + 00 1.90D + 00 1.34D + 00 7.76D � 01 5.09D � 01 5.95D � 01 1.01D + 00 1.68D + 00 2.57D + 00
5.99D � 01 8.98D � 02 1.77D � 01 1.94D � 01 9.45D � 02 6.35D � 02 2.26D � 01 3.60D � 01 4.53D � 01 4.99D � 01
1.45D � 01 5.01D � 04 7.05D � 05 9.26D � 04 1.61D � 04 9.12D � 04 6.51D � 03 1.85D � 02 3.64D � 02 5.83D � 02
3.61D � 02 2.09D � 08 5.24D � 05 6.39D � 08 3.77D � 07 1.30D � 06 4.22D � 06 4.81D � 06 2.91D � 05 5.20D � 05
9.03D � 03 1.46D � 10 3.26D � 06 2.80D � 14 4.69D � 09 4.11D � 12 7.00D � 12 3.90D � 11 1.92D � 10 6.96D � 10
2.26D � 03 2.27D � 12 2.04D � 07 1.68D � 18 7.32D � 11 2.04D � 24 5.40D � 14 1.92D � 20 6.68D � 17 1.17D � 18
5.64D � 04 3.55D � 14 1.27D � 08 1.64D � 21 1.14D � 12 4.38D � 28 2.11D � 16 1.65D � 29 6.50D � 20 1.65D � 29
1.41D � 04 5.55D � 16 7.97D � 10 1.60D � 24 1.79D � 14 1.66D � 29 8.23D � 19 1.65D � 29 6.34D � 23 1.65D � 29

ansformation W1(t) is as in (1.22), w(t) there being the sinm-transformation.

2
mbers lm;k ¼ 1

log 2
� log

jbT
2k ½f ��I ½f �j

jbT
2kþ1 ½f ��I ½f �j

� �
, for k = 1(1)8 and m = 1(1)10, for the integral of Section 7, where bT n½f � are those of Table 1

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

2.154 3.500 3.906 4.802 5.863 6.684 6.632 6.021 5.403 4.903
1.223 4.176 3.427 2.780 3.036 3.004 1.399 1.480 1.894 2.362
2.046 7.487 11.289 7.714 9.195 6.122 5.115 4.283 3.636 3.098
2.006 14.550 0.429 13.822 8.742 9.455 10.593 11.910 10.290 10.131
2.000 7.162 4.004 21.122 6.328 18.271 19.200 16.913 17.205 16.190
2.000 6.001 4.001 14.022 6.002 40.871 7.017 30.921 21.457 29.150
2.000 6.000 4.000 10.002 6.001 12.187 8.001 30.116 10.007 36.044
2.000 6.000 4.000 10.001 6.000 4.724 8.000 �0.002 10.001 �0.003



Table 3
Relative errors in the rules bT n½f � ¼ bT n;n½f � for the integral of Section 7, obtained via the transformation W2(t) with n = 2k, k = 1(1)9, and
m = �3/6(1/6)6/6

n m = �3/6 m = �2/6 m = �1/6 m = 0 m = 1/6 m = 2/6 m = 3/6 m = 4/6 m = 5/6 m = 6/6
M = 0.5 M = 1 M = 1.5 M = 2 M = 2.5 M = 3 M = 3.5 M = 4 M = 4.5 M = 5

2 2.34D + 01 3.02D + 01 2.69D + 01 1.84D + 01 8.76D + 00 3.68D � 02 7.42D + 00 1.34D + 01 1.81D + 01 2.19D + 01
4 1.39D + 00 2.90D + 00 2.77D + 00 1.62D + 00 2.97D � 01 8.12D � 01 1.60D + 00 2.07D + 00 2.29D + 00 2.30D + 00
8 2.33D � 02 8.61D � 03 4.38D � 02 8.98D � 02 8.43D � 02 2.04D � 02 7.57D � 02 1.73D � 01 2.49D � 01 2.92D � 01

16 5.72D � 04 5.24D � 04 5.78D � 04 5.01D � 04 5.38D � 04 7.24D � 04 8.37D � 04 7.29D � 04 4.65D � 04 2.15D � 04
32 3.02D � 09 3.57D � 06 3.13D � 08 2.09D � 08 3.50D � 08 2.20D � 08 2.52D � 08 6.06D � 08 6.63D � 08 2.03D � 09
64 5.30D � 10 2.21D � 07 1.45D � 15 1.46D � 10 5.53D � 17 1.96D � 13 3.72D � 16 1.91D � 15 3.51D � 15 3.38D � 15

128 8.27D � 12 1.38D � 08 1.33D � 18 2.27D � 12 1.14D � 24 7.65D � 16 1.65D � 30 4.30D � 19 5.13D � 29 3.63D � 22
256 1.29D � 13 8.62D � 10 1.30D � 21 3.55D � 14 6.94D � 29 2.99D � 18 2.47D � 32 4.19D � 22 9.86D � 32 8.84D � 26
512 2.02D � 15 5.39D � 11 1.27D � 24 5.55D � 16 3.70D � 32 1.17D � 20 1.23D � 32 4.10D � 25 9.24D � 32 2.16D � 29

The transformation W2(t) is as in (1.23), w(t) and -(t) there being the sinm-transformation and the sin2-transformation, respectively.

Table 4
The numbers lm;k ¼ 1

log 2
� log

jbT
2k ½f ��I ½f �j

jbT
2kþ1 ½f ��I ½f �j

� �
, for k = 1(1)8 and m = �3/6(1/6)6/6, for the integral of Section 7, where bT n½f � are those of

Table 3

k m = �3/6 m = �2/6 m = �1/6 m = 0 m = 1/6 m = 2/6 m = 3/6 m = 4/6 m = 5/6 m = 6/6
M = 0.5 M = 1 M = 1.5 M = 2 M = 2.5 M = 3 M = 3.5 M = 4 M = 4.5 M = 5

1 4.072 3.382 3.281 3.500 4.883 �4.465 2.217 2.694 2.988 3.249
2 5.902 8.395 5.981 4.176 1.815 5.316 4.398 3.579 3.196 2.979
3 5.346 4.039 6.243 7.487 7.291 4.815 6.500 7.893 9.066 10.409
4 17.530 7.197 14.173 14.550 13.910 15.007 15.021 13.554 12.778 16.691
5 2.512 4.015 24.362 7.162 29.236 16.775 26.010 24.916 24.172 19.196
6 6.001 4.001 10.093 6.001 25.531 8.001 47.680 12.120 45.957 23.152
7 6.000 4.000 10.001 6.000 14.005 8.001 6.066 10.001 9.024 12.002
8 6.000 4.000 10.000 6.000 10.874 8.000 1.000 10.000 0.093 12.003
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for the same values of m and for k = 1,2, . . . , 8. It is seen that, with increasing k, the lm,k in Table 2 are tending
to 2m + 2 for even integer values of m, while for other values of m, the lm,k are tending to m + 1, completely in
accordance with Theorem 5.1. It is also seen that, with increasing k, the lm,k in Table 4 are tending to 4M + 4
for odd integer values of 2M = 2[3(m + 1) � 1] = 6m + 4, while for other values of M, the lm,k are tending to
2M + 2, completely in accordance with Theorem 6.2. Note that, with q = 2, 2M is an odd integer P1 when
m = (2j � 5)/6, j = 1,2, . . .
8. Concluding remarks

In this work, we have described numerical quadrature formulas based on the trapezoidal rule for comput-
ing integrals of functions with point singularities over smooth surfaces in R3 that are homeomorphic to the
unit sphere. These formulas are obtained as follows: We first transform the integrals to the unit sphere map-
ping the point of singularity to one of the poles of the unit sphere, and express the transformed integrals in
terms of the standard spherical coordinates h and /, 0 6 h 6 p and 0 6 / 6 2p. We then transform the var-
iable h via h = W(t), 0 6 t 6 1, where W(t) is a variable transformation related to a transformation in the class
Sm; this is done in two different ways. Finally, we apply the product trapezoidal rule to the integral in t and /.
We have shown that, with one of the variable transformations, the error in the approximations obtained can
be as high as O(h2m+2) when m is an even integer, while with the other transformation, the error can be as high
as O(h4M+4) with M = (m + 1)(q + 1) � 1, when 2M is an odd integer or, equivalently, when 2(q + 1)m is an
odd integer, where, we recall, q is an even integer.
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Appendix. Proof of Theorem 3.5

By (3.3), we first have (see also [11, Eq. (2.10)])
~rij ¼
oni=o~x1 oni=o~x2 oni=o~x3

onj=o~x1 onj=o~x2 onj=o~x3

~x1 ~x2 ~x3

�������
�������. ðA:1Þ
Next,
oni

o~xs
¼
X3

p¼1

oni

oxp
½H �ps. ðA:2Þ
Next, r ¼ H~r by (1.8), so that ~r ¼ H�1r, which, by the fact that H�1 = HT, becomes ~r ¼ H Tr. Consequently,
~xk ¼
X3

r¼1

½H T�krxr ¼
X3

r¼1

½H �rkxr. ðA:3Þ
Substituting (A.2) and (A.3) in (A.1), the determinant expression for ~rij becomes
~rij ¼

P3
p¼1

oni=oxp½H �p1

P3
p¼1

oni=oxp½H �p2

P3
p¼1

oni=oxp½H �p3

P3
q¼1

onj=oxq½H �q1

P3
q¼1

onj=oxq½H �q2

P3
q¼1

onj=oxq½H �q3

P3
r¼1

½H �r1xr
P3
r¼1

½H �r2xr
P3
r¼1

½H �r3xr

��������������

��������������
;

which, by the multilinearity property of determinants, in turn, becomes
~rij ¼
X3

p¼1

X3

q¼1

X3

r¼1

oni

oxp

onj

oxq
xrV pqr; ðA:4Þ
where
V pqr ¼
½H �p1 ½H �p2 ½H �p3

½H �q1 ½H �q2 ½H �q3

½H �r1 ½H �r2 ½H �r3

�������
�������.
Clearly,
V pqr ¼ �pqrðdet HÞ; ðA:5Þ
where �123 = 1 and �pqr is odd under an interchange of any two of the indices p, q, and r, which means that
�pqr = 0 when any two of these indices have the same value. Substituting (A.5) in (A.4), we thus obtain
~rij ¼ ðdet HÞ
X3

p¼1

X3

q¼1

X3

r¼1

�pqr
oni

oxp

onj

oxq
xr;
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which can be rewritten in the form
~rij ¼ ðdet HÞ
oni=ox1 oni=ox2 oni=ox3

onj=ox1 onj=ox2 oxij=ox3

x1 x2 x3

�������
������� ¼ ðdet HÞ½ð$ni � $njÞ � r� ¼ ðdet HÞrij. ðA:6Þ
By (A.6), the fact that H is orthogonal and hence jdetHj = 1, and (3.3) and (3.5), we obtaineRð~x1;~x2;~x3Þ ¼ Rðx1; x2; x3Þ. This completes the proof of (3.6). The result in (3.7) is an immediate consequence
of (3.6) and (3.4).
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